| Age | Commit message (Collapse) | Author | Files | Lines |
|
As per RFC 2616 / RFC 7233, any range request to an empty file
is expected to result in 416 Range Not Satisfiable response, as
there cannot be a "byte-range-spec whose first-byte-pos is less
than the current length of the entity-body". On the other hand,
this makes use of byte-range requests inconvenient in some cases,
as reported for the slice module here:
http://mailman.nginx.org/pipermail/nginx-devel/2017-June/010177.html
This commit changes range filter to instead return 200 if the file
is empty and the range requested starts at 0.
|
|
This change reworks 13a5f4765887 to only run posted requests once,
with nothing on stack. Running posted requests with other request
functions on stack may result in use-after-free in case of errors,
similar to the one reported in #788.
To only run posted request once, a separate function was introduced
to be used as ssl handshake handler in c->ssl->handler,
ngx_http_upstream_ssl_handshake_handler(). The ngx_http_run_posted_requests()
is only called in this function, and not in ngx_http_upstream_ssl_handshake()
which may be called directly on stack.
Additionaly, ngx_http_upstream_ssl_handshake_handler() now does appropriate
debug logging of the current subrequest, similar to what is done in other
event handlers.
|
|
Previously, the upstream resolve handler always called
ngx_http_run_posted_requests() to run posted requests after processing the
resolver response. However, if the handler was called directly from the
ngx_resolve_name() function (for example, if the resolver response was cached),
running posted requests from the handler could lead to the following errors:
- If the request was scheduled for termination, it could actually be terminated
in the resolve handler. Upper stack frames could reference the freed request
object in this case.
- If a significant number of requests were posted, and for each of them the
resolve handler was called directly from the ngx_resolve_name() function,
posted requests could be run recursively and lead to stack overflow.
Now ngx_http_run_posted_requests() is only called from asynchronously invoked
resolve handlers.
|
|
Trailers added using this directive are evaluated after response body
is processed by output filters (but before it's written to the wire),
so it's possible to use variables calculated from the response body
as the trailer value.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Example:
ngx_table_elt_t *h;
h = ngx_list_push(&r->headers_out.trailers);
if (h == NULL) {
return NGX_ERROR;
}
ngx_str_set(&h->key, "Fun");
ngx_str_set(&h->value, "with trailers");
h->hash = ngx_hash_key_lc(h->key.data, h->key.len);
The code above adds "Fun: with trailers" trailer to the response.
Modules that want to emit trailers must set r->expect_trailers = 1
in header filter, otherwise they might not be emitted for HTTP/1.1
responses that aren't already chunked.
This change also adds $sent_trailer_* variables.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
The current style in variable handlers returning NGX_OK is to either set
v->not_found to 1, or to initialize the entire ngx_http_variable_value_t
structure.
In theory, always setting v->valid = 1 for NGX_OK would be useful, which
would mean that the value was computed and is thus valid, including the
special case of v->not_found = 1. But currently that's not the case and
causes the (v->valid || v->not_found) check to access an uninitialized
v->valid value, which is safe only because its value doesn't matter when
v->not_found is set.
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
When evaluating a mapped $reset_uid variable in the userid filter,
if get_handler set to ngx_http_map_variable() returned an error,
this previously resulted in a NULL pointer dereference.
|
|
If memory allocation of a new r->uri.data storage failed, reset its length as
well. Request URI is used in ngx_http_finalize_request() for debug logging.
|
|
Previously, when using NGX_HTTP_SSI_ERROR, error was ignored in ssi processing,
thus timefmt could be accessed later in ngx_http_ssi_date_gmt_local_variable()
as part of "set" handler, or NULL format pointer could be passed to strftime().
|
|
Previously, SETTINGS ACK was sent immediately upon receipt of SETTINGS
frame, before already queued DATA frames created using old SETTINGS.
This incorrect behavior was source of interoperability issues, because
peers rely on the fact that new SETTINGS are in effect after receiving
SETTINGS ACK.
Reported by Feng Li.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
This avoids sending unnecessary SETTINGS ACK in case of PROTOCOL_ERROR.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Previously, new frames could be emitted in the middle of applying
new (and already acknowledged) SETTINGS params, which is illegal.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
If the main request was finalized while a background request performed an
asynchronous operation, the main request ended up in ngx_http_writer() and was
not finalized until a network event or a timeout. For example, cache
background update with aio enabled made nginx unable to process further client
requests or close the connection, keeping it open until client closes it.
Now regular finalization of the main request is not suspended because of an
asynchronous operation in another request.
If a background request was terminated while an asynchronous operation was in
progress, background request's write event handler was changed to
ngx_http_request_finalizer() and never called again.
Now, whenever a request is terminated while an asynchronous operation is in
progress, connection error flag is set to make further finalizations of any
request with this connection lead to termination.
These issues appeared in 1aeaae6e9446 (not yet released).
|
|
With OpenSSL 1.1.0+, the workaround for handshake buffer size as introduced
in a720f0b0e083 (ticket #413) no longer works, as OpenSSL no longer exposes
handshake buffers, see https://github.com/openssl/openssl/commit/2e7dc7cd688.
Moreover, it is no longer possible to adjust handshake buffers at all now.
To avoid additional RTT if handshake uses more than 4k we now set TCP_NODELAY
on SSL connections before handshake. While this still results in sub-optimal
network utilization due to incomplete packets being sent, it seems to be
better than nothing.
|
|
|
|
Previously, cache background update might not work as expected, making client
wait for it to complete before receiving the final part of a stale response.
This could happen if the response could not be sent to the client socket in one
filter chain call.
Now background cache update is done in a background subrequest. This type of
subrequest does not block any other subrequests or the main request.
|
|
If allocation of cleanup handler in the HTTP/2 header filter failed, then
a stream might be freed with a HEADERS frame left in the output queue.
Now the HEADERS frame is accounted in the queue before trying to allocate
the cleanup handler.
|
|
Abnormally exited workers may leave locked cache entries, this can
result in the cache size on disk exceeding max_size and shared memory
exhaustion.
This change mitigates the issue by ignoring locked entries during forced
expire. It also increases the visibility of the problem by logging such
entries.
|
|
Previously, an allocation error resulted in uninitialized memory access
when evaluating $upstream_http_ variables.
On a related note, see r->headers_out.headers cleanup work in 0cdee26605f3.
|
|
|
|
|
|
Found by gcc7 (-Wimplicit-fallthrough).
|
|
|
|
Particularly, this eliminates difference in behavior for requests without body
and deduplicates code.
Prodded by Piotr Sikora.
|
|
It's required by RFC 7540. While there is no real harm from such frames,
that should help to detect broken clients.
Based on a patch by Piotr Sikora.
|
|
|
|
If initialization of a header failed for some reason after ngx_list_push(),
leaving the header as is can result in uninitialized memory access by
the header filter or the log module. The fix is to clear partially
initialized headers in case of errors.
For the Cache-Control header, the fix is to postpone pushing
r->headers_out.cache_control until its value is completed.
|
|
Previously, ngx_http_sub_header_filter() could fail with a partially
initialized context, later accessed in ngx_http_sub_body_filter()
if called from the perl content handler.
The issue had appeared in 2c045e5b8291 (1.9.4).
A better fix would be to handle ngx_http_send_header() errors in
the perl module, though this doesn't seem to be easy enough.
|
|
Support for the TLSv1.3 protocol will be introduced in OpenSSL 1.1.1.
|
|
|
|
|
|
This change adds "http_429" parameter to "proxy_next_upstream" for
retrying rate-limited requests, and to "proxy_cache_use_stale" for
serving stale cached responses after being rate-limited.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
This change adds reason phrase in status line and pretty response body
when "429" status code is used in "return", "limit_conn_status" and/or
"limit_req_status" directives.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
|
|
When a slice subrequest was redirected to a new location, its context was lost.
After its completion, a new slice subrequest for the same slice was created.
This could lead to infinite loop. Now the slice module makes sure each slice
subrequest starts output with the slice context available.
|
|
Previously, if slice main request write handler was called while a slice
subrequest was running, a new subrequest for the same slice was started.
|
|
With post_action or subrequests, it is possible that the timer set for
wev->delayed will expire while the active subrequest write event handler
is not ready to handle this. This results in request hangs as observed
with limit_rate / sendfile_max_chunk and post_action (ticket #776) or
subrequests (ticket #1228).
Moving the handling to the connection event handler fixes the hangs observed,
and also slightly simplifies the code.
|
|
Much like in limit_req, use the wev->delayed flag to ensure proper handling
and interoperability with limit_rate.
|
|
Since limit_req uses connection's write event to delay request processing,
it can conflict with timers in other subrequests. In particular, even
if applied to an active subrequest, it can break things if wev->delayed
is already set (due to limit_rate or sendfile_max_chunk), since after
limit_req finishes the wev->delayed flag will be set and no timer will be
active.
Fix is to use the wev->delayed flag in limit_req as well. This ensures that
wev->delayed won't be set after limit_req finishes, and also ensures that
limit_req's timers will be properly handled by other subrequests if the one
delayed by limit_req is not active.
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
All streams in connection must be finalized before the connection
itself can be finalized and all related memory is freed. That's
not always possible on the current event loop iteration.
Thus when the last stream is finalized, it sets the special read
event handler ngx_http_v2_handle_connection_handler() and posts
the event.
Previously, this handler didn't check the connection state and
could call the regular event handler on a connection that was
already in finalization stage. In the worst case that could
lead to a segmentation fault, since some data structures aren't
supposed to be used during connection finalization. Particularly,
the waiting queue can contain already freed streams, so the
WINDOW_UPDATE frame received by that moment could trigger
accessing to these freed streams.
Now, the connection error flag is explicitly checked in
ngx_http_v2_handle_connection_handler().
|
|
In order to finalize stream the error flag is set on fake connection and
either "write" or "read" event handler is called. The read events of fake
connections are always ready, but it's not the case with the write events.
When the ready flag isn't set, the error flag can be not checked in some
cases and as a result stream isn't finalized. Now the ready flag is
explicilty set on write events for proper finalization in all cases.
|
|
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|
|
Previously, flow control didn't account for padding in DATA frames,
which meant that its view of the world could drift from peer's view
by up to 256 bytes per received padded DATA frame, which could lead
to a deadlock.
Signed-off-by: Piotr Sikora <piotrsikora@google.com>
|