| Age | Commit message (Collapse) | Author | Files | Lines |
|
All definitions now set in ngx_event_quic.h, this includes moving
NGX_QUIC_OPENSSL_COMPAT from autotests to compile time. Further,
to improve code readability, a new NGX_QUIC_QUICTLS_API macro is
used for QuicTLS that provides old BoringSSL QUIC API.
|
|
Previously QUIC did not have such parameter and handshake duration was
controlled by HTTP/3. However that required creating and storing HTTP/3
session on first client datagram. Apparently there's no convenient way to
store the session object until QUIC handshake is complete. In the followup
patches session creation will be postponed to init() callback.
|
|
Previously, ngx_udp_rbtree_insert_value() was used for plain UDP and
ngx_quic_rbtree_insert_value() was used for QUIC. Because of this it was
impossible to initialize connection tree in ngx_create_listening() since
this function is not aware what kind of listening it creates.
Now ngx_udp_rbtree_insert_value() is used for both QUIC and UDP. To make
is possible, a generic key field is added to ngx_udp_connection_t. It keeps
client address for UDP and connection ID for QUIC.
|
|
The directive used to set the value of the "max_udp_payload_size" transport
parameter. According to RFC 9000, Section 18.2, the value specifies the size
of buffer for reading incoming datagrams:
This limit does act as an additional constraint on datagram size in
the same way as the path MTU, but it is a property of the endpoint
and not the path; see Section 14. It is expected that this is the
space an endpoint dedicates to holding incoming packets.
Current QUIC implementation uses the maximum possible buffer size (65527) for
reading datagrams.
|
|
Previously, stream events were added and deleted by ngx_handle_read_event() and
ngx_handle_write_event() in a way similar to level-triggered events. However,
QUIC stream events are effectively edge-triggered and can stay active all time.
Moreover, the events are now active since the moment a stream is created.
|
|
It's called after handshake completion or prior to the first early data stream
creation. The callback should initialize application-level data before
creating streams.
HTTP/3 callback implementation sets keepalive timer and sends SETTINGS.
Also, this allows to limit max handshake time in ngx_http_v3_init_stream().
|
|
Now main QUIC connection for HTTP/3 always has c->idle flag set. This allows
the connection to receive worker shutdown notification. It is passed to
application level via a new conf->shutdown() callback.
The HTTP/3 shutdown callback sends GOAWAY to client and gracefully shuts down
the QUIC connection.
|
|
Previously, stream was kept alive until all its data is sent. This resulted
in disabling retransmission of final part of stream when QUIC connection
was closed right after closing stream connection.
|
|
The connection is automatically switched to this mode by transport layer when
there are no non-cancelable streams. Currently, cancelable streams are
HTTP/3 encoder/decoder/control streams.
|
|
Previously, QUIC used the existing UDP framework, which was created for UDP in
Stream. However the way QUIC connections are created and looked up is different
from the way UDP connections in Stream are created and looked up. Now these
two implementations are decoupled.
|
|
Previously, last buffer was tracked by keeping a pointer to the previous
chain link "next" field. When the previous buffer was split and then removed,
the pointer was no longer valid. Writing at this pointer resulted in broken
data chains.
Now last buffer is tracked by keeping a direct pointer to it.
|
|
|
|
The object is used instead of ngx_chain_t pointer for buffer operations like
ngx_quic_write_chain() and ngx_quic_read_chain(). These functions are renamed
to ngx_quic_write_buffer() and ngx_quic_read_buffer().
|
|
Now ngx_quic_stream_t is decoupled from ngx_connection_t in a way that it
can persist after connection is closed by application. During this period,
server is expecting stream final size from client for correct flow control.
Also, buffered output is sent to client as more flow control credit is granted.
|
|
The switch happens when received byte counter reaches stream final size.
Previously, this state was skipped. The stream went from SIZE_KNOWN to
DATA_READ when all bytes were read by application.
The change prevents STOP_SENDING frames from being sent when all data is
received from client, but not yet fully read by application.
|
|
|
|
This allows to eliminate the usage of stream connection event flags for tracking
stream state.
|
|
|
|
The directive sets corresponding transport parameter and limits number of
created client ids.
|
|
Previously, when a few bytes were send to a QUIC stream by the application, a
4K buffer was allocated for these bytes. Then a STREAM frame was created and
that entire buffer was used as data for that frame. The frame with the buffer
were in use up until the frame was acked by client. Meanwhile, when more
bytes were send to the stream, more buffers were allocated and assigned as
data to newer STREAM frames. In this scenario most buffer memory is unused.
Now the unused part of the stream output buffer is available for further
stream output while earlier parts of the buffer are waiting to be acked.
This is achieved by splitting the output buffer.
|
|
Directives that set transport parameters are removed from the configuration.
Corresponding values are derived from the quic configuration or initialized
to default. Whenever possible, quic configuration parameters are taken from
higher-level protocol settings, i.e. HTTP/3.
|
|
The reasons why a stream may not be created by server currently include hitting
worker_connections limit and memory allocation error. Previously in these
cases the entire QUIC connection was closed and all its streams were shut down.
Now the new stream is rejected and existing streams continue working.
To reject an HTTP/3 request stream, RESET_STREAM and STOP_SENDING with
H3_REQUEST_REJECTED error code are sent to client. HTTP/3 uni streams and
Stream streams are not rejected.
|
|
Previously, it was not enforced in the stream module.
Now, since b9e02e9b2f1d it is possible to specify protocols.
Since ALPN is always required, the 'require_alpn' setting is now obsolete.
|
|
|
|
The functions ngx_quic_handle_read_event() and ngx_quic_handle_write_event()
are added. Previously this code was a part of ngx_handle_read_event() and
ngx_handle_write_event().
The change simplifies ngx_handle_read_event() and ngx_handle_write_event()
by moving QUIC-related code to a QUIC source file.
|
|
|
|
The directive enables usage of UDP segmentation offloading by quic.
By default, gso is disabled since it is not always operational when
detected (depends on interface configuration).
|
|
- Function ngx_quic_control_flow() is introduced. This functions does
both MAX_DATA and MAX_STREAM_DATA flow controls. The function is called
from STREAM and RESET_STREAM frame handlers. Previously, flow control
was only accounted for STREAM. Also, MAX_DATA flow control was not accounted
at all.
- Function ngx_quic_update_flow() is introduced. This function advances flow
control windows and sends MAX_DATA/MAX_STREAM_DATA. The function is called
from RESET_STREAM frame handler, stream cleanup handler and stream recv()
handler.
|
|
To specify final protocol version by hand:
add_header Alt-Svc h3=":443";
|
|
As per quic-transport 34, FINAL_SIZE_ERROR is generated if an endpoint received
a STREAM frame or a RESET_STREAM frame containing a final size that was lower
than the size of stream data that was already received.
|
|
Generic function ngx_quic_order_bufs() is introduced. This function creates
and maintains a chain of buffers with holes. Holes are marked with b->sync
flag. Several buffers and holes in this chain may share the same underlying
memory buffer.
When processing STREAM frames with this function, frame data is copied only
once to the right place in the stream input chain. Previously data could
be copied twice. First when buffering an out-of-order frame data, and then
when filling stream buffer from ordered frame queue. Now there's only one
data chain for both tasks.
|
|
Previously each stream had an input buffer. Now memory is allocated as
bytes arrive. Generic buffering mechanism is used for this.
|
|
|
|
Stop including QUIC headers with no user-serviceable parts inside.
This allows to provide a much cleaner QUIC interface. To cope with that,
ngx_quic_derive_key() is now explicitly exported for v3 and quic modules.
Additionally, this completely hides the ngx_quic_keys_t internal type.
|
|
|
|
The "ngx_event_quic.h" header file now contains only public definitions,
used by modules. All internal definitions are moved into
the "ngx_event_quic_connection.h" header file.
|
|
Currently listener contains rbtree with multiple nodes for single QUIC
connection: each corresponding to specific server id. Each udp node points
to same ngx_connection_t, which points to QUIC connection via c->udp field.
Thus when an event handler is called, it only gets ngx_connection_t with
c->udp pointing to QUIC connection. This makes it hard to obtain actual
node which was used to dispatch packet (it requires to repeat DCID lookup).
Additionally, ngx_quic_connection_t->udp field is only needed to keep a
pointer in c->udp. The node is not added into the tree and does not carry
useful information.
|
|
The function ngx_quic_shutdown_connection() waits until all non-cancelable
streams are closed, and then closes the connection. In HTTP/3 cancelable
streams are all unidirectional streams except push streams.
The function is called from HTTP/3 when client reaches keepalive_requests.
|
|
|
|
|
|
The token generation in QUIC is reworked. Single host key is used to generate
all required keys of needed sizes using HKDF.
The "quic_stateless_reset_token_key" directive is removed. Instead, the
"quic_host_key" directive is used, which reads key from file, or sets it
to random bytes if not specified.
|
|
Previously, quic connection object was created when Retry packet was sent.
This is neither necessary nor convenient, and contradicts the idea of retry:
protecting from bad clients and saving server resources.
Now, the connection is not created, token is verified cryptographically
instead of holding it in connection.
|
|
|